Abstract
AbstractThe study examined the feasibility of utilizing the mixture of ceramic sludge and roller kiln wastes, to produce low-cost ceramic-based membranes designated for use in wastewater treatment applications. In recent years, the treatment of wastewater contaminated with humic acid has posed significant challenges due to its complex nature and resistance to conventional treatment methods. To improve the physical, mechanical, and filtration qualities of the membranes, the study involved preparing them using a blend of five distinct composition ratios of totally recycled ceramic sludge and roller kiln wastes, which were then sintered at temperatures ranging from 900 °C to 1300 °C. The most effective membrane showed the best permeate flux and humic acid separation efficiency for the wastewater samples when it was sintered at 1000 °C using only ceramic sludge waste. The produced membranes were thoroughly examined to reveal their structural and chemical characteristics. This confirmed the effective integration of functionalized multi-walled carbon nanotubes (f-MWCNTs) and their influence on the membranes’ functionality. f-MWCNTs were added to the membrane’s surface via wet impregnation and drop casting methods. This resulted in a notable improvement in the membrane’s humic acid separation efficiency, which increased to 92.61%, and the flux increased to 128.46 L/m2/h at a concentration of 100 mg L−1 as well. The opportunity to develop effective and environmentally sustainable ceramic membranes for water treatment using industrial ceramic wastes is highlighted by this study.
Funder
Academy of Scientific Research and Technology
Central Metallurgical Research and Development Institute
Publisher
Springer Science and Business Media LLC