Integrated system for recycling and treatment of hazardous pharmaceutical wastewater

Author:

Abdelfattah I.,Abuarab M. E.,Mostafa E.,El-Awady M. H.,Aboelghait K. M.,El-Shamy A. M.ORCID

Abstract

AbstractThis study aimed to investigate an integrated system that can deal with different pharmaceutical wastewaters. Pharmaceutical wastewater was subjected to biological, chemical and advanced oxidation according to its pollutant’s nature. Wastewater with high total suspended solids (TSS 480 mg/L) was subjected to a conventional chemical treatment process utilizing different coagulants. The best results were obtained by using calcium oxide and alum added with calcium oxide where the removal efficiency of COD was 46.8% and 51%. Highly loaded pharmaceutical wastewater (COD 9700 mg/L, BOD/COD 0.16) had been subjected to Fenton oxidation, the removal of COD reached 80.4%, and the ratio of BOD/COD is enhanced to 0.6. Photocatalysis by using different nanomaterials was applied to pharmaceutical wastewater containing 10 mg/L of phenols. Phenol is completely removed by using mesoporous TiO2 after 90-min irradiation and after 120 min in the case of TiO2/P25 and TiO2/UV 100 nanocomposites, while it is removed by 40% in case of using mesoporous TiO2/Ta2O5. Effluent-treated water from previous routes was subjected to biological treatment and followed with disinfection by using UV as post-treatment. The final COD was 40, and it matches with the Egyptian practice code for water reuse in agriculture (ECP 501 in Egyptian code of practice for the use of treated municipal wastewater for agricultural purposes. The ministry of Housing Utilities and Urban Communities., n.d. No title, 2015). Results showed also using treated wastewater in irrigation of barley and bean seeds achieved germination ratio up to 71% in barely and 70% in bean compared with that irrigated with Nile water, which reached 70% and 75%, while it was about 16.6% and 30% in case of irrigation with untreated wastewater (Jeong et al. in Water (Switzerland). https://doi.org/10.3390/w8040169, 2016).

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3