Scale-up of dry impregnation processes for porous spherical catalyst particles in a rotating drum: experiments and simulations

Author:

Xu Pengfei,Shen Yangyang,Avila Bryant,Makse Hernán A.,Tomassone Maria S.ORCID

Abstract

Abstract Catalyst impregnation is the first step and one of the most crucial steps for preparing industrial catalysts. The process is typically performed in rotating vessels with a spray-nozzle to distribute the liquid onto porous catalyst supports until the pore volume is reached. The inter-particle variability of the impregnated liquid inside the particles significantly affects the activity and selectivity of the resulting catalyst. Current scale-up practices lead to poor fluid distribution and inhomogeneity in the liquid content. The aim of this work is to understand the dynamic behavior of the particles under the spray nozzle, which is essential for desired content uniformity, and to develop a scale-up model for the dry impregnation process. In this work, we considered four dimensionless numbers in the scaling analysis. The scale-up rules require that the dimensionless numbers are kept constant for different scales. Both DEM simulations and matching experiments of dry impregnation inside the porous particles were performed for different vessel sizes. The water content of the particles was compared for different times and locations, and the relative standard deviation is calculated from the axial water content. Simulation and experimental results show that particles achieve similar content uniformity at the end of impregnation, confirming that the scale-up rules are applicable to all vessel sizes. The dimensionless numbers give very good scale-up performance since curves collapse indicating similarity in the processes. In addition, the scale-up method is validated for different particle sizes in simulations. Graphical abstract

Funder

National Science Foundation

Catalyst Manufacturing Consortium at Rutgers University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3