Abstract
AbstractIn this work, Discrete Elements Method simulations are carried out to investigate the effective stiffness of an assembly of frictional, elastic spheres under anisotropic loading. Strain probes, following both forward and backward paths, are performed at several anisotropic levels and the corresponding stress is measured. For very small strain perturbations, we retrieve the linear elastic regime where the same response is measured when incremental loading and unloading are applied. Differently, for a greater magnitude of the incremental strain a different stress is measured, depending on the direction of the perturbation. In the case of unloading probes, the behavior stays elastic until non-linearity is reached.Under forward perturbations, the aggregate shows an intermediate inelastic stiffness, in which the main contribution comes from the normal contact forces. That is, when forward incremental probes are applied the behavior of anisotropic aggregates is an incremental frictionless behavior. In this regime we show that contacts roll or slide so the incremental tangential contact forces are zero.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Mechanics of Materials,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献