1. Afshan A, Guo J, Park S J, Ravi, V, Flint, J, Alwan, A (2018). Effectiveness of voice quality features in detecting depression. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2018-Septe(September), 1676–1680. https://doi.org/10.21437/Interspeech.2018-1399
2. Alghowinem, S, Goecke, R, Wagner, M, Epps, J., Breakspear, M, Parker, G (2012). From joyous to clinically depressed: mood detection using spontaneous speech. In Proceedings of the 25th International Florida Artificial Intelligence Research Society Conference, FLAIRS-25 (pp. 141–146).
3. Alghowinem S, Goecke R, Wagner M, Epps J. Detecting depression: a comparison between spontaneous and read speech. IEEE. 2013a:7547–51.
4. Alghowinem, S, Goecke, R, Wagner, M, Epps, J., Gedeon, T, Breakspear, M, Parker, G (2013b). A comparative study of different classifiers for detecting depression from spontaneous speech. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (pp. 8022–8026). https://doi.org/10.1109/ICASSP.2013.6639227.
5. Alpert M, Pouget ER, Silva RR. Reflections of depression in acoustic measures of the patient’s speech. J Affect Disord. 2001;66:59–69.