Influence of Selenium Oxide on Structure and Properties of New Zinc Boroselenite Glasses

Author:

Elhelw Aya K.,Hassan Abdelmeguid K.,Mostafa Yosry M.,El-Damrawi Gomaa M.

Abstract

AbstractThe traditional melt quenching method was used to prepare new zinc boroselenite glasses in the system xSeO2·(50 − x)ZnO·50B2O3 with varying SeO2/ZnO molar ratio. X-ray diffraction patterns (XRD) have revealed an amorphous structure in glasses of up to 40 mol pct SeO2. On the other hand, the presence of sharp diffraction peaks on the XRD spectra of samples containing 40 and 50 mol pct SeO2 confirms a formation of some polycrystalline phases distributed in the host glass network. Based on FTIR and NMR data, the glass structure at a short-range order exhibited a similar value of the fraction of tetrahedral boron (N4), particularly, for both samples of 0 and 5 mol pct SeO2. In this situation, SeO2 is as well as ZnO both played a modifier role. On the other hand, increasing SeO2 on expense of ZnO decreases the N4 fraction gradually. However, in SeO2-rich glass, most of boron atoms are mainly placed in three coordinated sites in BO3 units coordinated with SeO4 groups. Decreasing N4 fraction and increasing crystallization confirmed that SeO2 operates as a glass former and mainly as a crystalline agent. The results based on the TEM of the selected area of electron diffraction patterns (EDP) agree well with the ones obtained by XRD. The diffraction patterns clearly displayed two sets of diffraction rings: one is caused by boroselenite nanocrystals and the other by zinc selenite. In contrast, a broader halo of dispersed structure, known as an amorphous structure, is present in the diffraction pattern obtained from SeO2-free glass.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3