Impact of Hydrogenous Gas Injection on the Blast Furnace Process: A Numerical Investigation

Author:

Mauret Florent,Baniasadi Mehdi,Saxén Henrik,Feiterna Andreas,Hojda Stephan

Abstract

AbstractIntensifying hydrogen use in the blast furnace is a key technology for significant coke and CO2 emissions reductions. The most straightforward approach is the implementation of high hydrogenous gas injection rates in the BF tuyeres. Yet this solution has not been widely implemented due to a lack of understanding of the impact on the furnace’s internal state. In this paper, a newly developed BF mathematical model is presented and validated on operation data. The model is next applied to investigate the effect of hydrogenous gas injection on the overall performance and internal state of the furnace. The current state of an industrial BF is used as a starting point, increasing the injection of coke oven gas, natural gas or pure H2 to the maximum where the limits for a safe and stable process are still obeyed. All three gases were found capable of significantly decreasing the coke rate, but only coke oven gas and pure H2 allowed for a significant reduction of the CO2 emissions. It was found that the indirect reduction of H2 is intensified by hydrogen enrichment partially at the expense of indirect reduction by CO. Furthermore, the water gas shift reaction is intensified at increased hydrogenous gas injection, affecting the CO and H2 utilization of the top gas. The study gives an insight into the feasibility of BF processes with high hydrogenous gases injection into the tuyeres and the resulting coke savings.

Funder

Abo Akademi University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3