1. L. Ruff, J. Kauffmann, R. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. Dietterich, K. M ̈uller, A Unifying Review of Deep and Shallow Anomaly Detection (IEEE, 2021)
2. H. Hojjati, T. Ho, N. Armanfard, Self-Supervised Anomaly Detection: A Survey and Outlook, (IEEE, 2022)
3. V. Hodge, J. Austin, A survey of outlier detection methodologies. Arti. Int. Rev. 22(10), 85–126 (2004)
4. R. Feinman, R. Curtin, S. Shintre, A. Gardner, Detecting adversarial samples from artifacts. arX., 0410 (2017)
5. K. Lee, K. Lee, H. Lee, J. Shin, A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Adv. Neur. Info. Proc. Syst. 31 (2018)