Diagnostic accuracy of a large language model in rheumatology: comparison of physician and ChatGPT-4

Author:

Krusche MartinORCID,Callhoff JohnnaORCID,Knitza JohannesORCID,Ruffer NikolasORCID

Abstract

AbstractPre-clinical studies suggest that large language models (i.e., ChatGPT) could be used in the diagnostic process to distinguish inflammatory rheumatic (IRD) from other diseases. We therefore aimed to assess the diagnostic accuracy of ChatGPT-4 in comparison to rheumatologists. For the analysis, the data set of Gräf et al. (2022) was used. Previous patient assessments were analyzed using ChatGPT-4 and compared to rheumatologists’ assessments. ChatGPT-4 listed the correct diagnosis comparable often to rheumatologists as the top diagnosis 35% vs 39% (p = 0.30); as well as among the top 3 diagnoses, 60% vs 55%, (p = 0.38). In IRD-positive cases, ChatGPT-4 provided the top diagnosis in 71% vs 62% in the rheumatologists’ analysis. Correct diagnosis was among the top 3 in 86% (ChatGPT-4) vs 74% (rheumatologists). In non-IRD cases, ChatGPT-4 provided the correct top diagnosis in 15% vs 27% in the rheumatologists’ analysis. Correct diagnosis was among the top 3 in non-IRD cases in 46% of the ChatGPT-4 group vs 45% in the rheumatologists group. If only the first suggestion for diagnosis was considered, ChatGPT-4 correctly classified 58% of cases as IRD compared to 56% of the rheumatologists (p = 0.52). ChatGPT-4 showed a slightly higher accuracy for the top 3 overall diagnoses compared to rheumatologist’s assessment. ChatGPT-4 was able to provide the correct differential diagnosis in a relevant number of cases and achieved better sensitivity to detect IRDs than rheumatologist, at the cost of lower specificity. The pilot results highlight the potential of this new technology as a triage tool for the diagnosis of IRD.

Funder

Universitätsklinikum Hamburg-Eppendorf (UKE)

Publisher

Springer Science and Business Media LLC

Subject

Immunology,Immunology and Allergy,Rheumatology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3