Robot-assisted mobilisation in the intensive care unit: does it offer relief to mobilising specialists? A qualitative longitudinal study at a German university hospital

Author:

Mehler-Klamt A. C.ORCID,Huber J.,Koestler N.,Warmbein A.,Rathgeber I.,Fischer U.,Eberl I.

Abstract

Abstract Background Immobility among intensive care patients can result in significant impairments. Reasons for this issue include a lack of specialised staff and equipment, as well as safety concerns associated with transferring patients to a therapy device. Nevertheless, early mobilisation is recognised as beneficial for improving patient outcomes. This study explores the perspectives of healthcare professionals on the use of a robotic system for patient mobilisation and identifies related stress and relief factors. Method This qualitative longitudinal study was conducted at a German university hospital, where 29 interviews were conducted with nurses at three different data collection points. The data were analysed using qualitative content analysis in accordance with Mayring. Findings The utilisation of the VEMOTION® robotic system generally did not lead to any physical discomfort. However, the adoption of this technology presented certain challenges. Non-routine users initially experienced psychological strain, primarily due to the extensive preparation required and the need to integrate the system into established routines. Additionally, structural factors, such as nurse-to-patient ratios and the layout of the care facilities, were identified as significant determinants affecting both the practicality of mobilisation and associated stress levels. Conclusions Robotic systems like VEMOTION® can alleviate the physical workload of nurses. Successful integration and psychological adaptation depend on familiarity and routine use of the technology. Addressing structural and staffing factors is crucial for optimising robotic assistance in patient care. Further research should delve into these dynamics and explore the broader implications of technology adoption in healthcare. Trial registration: clinicaltrials.org TRN: NCT05071248, Date: 2021/10/21 URL: https://clinicaltrials.gov/ct2/show/NCT05071248

Funder

Bundesministerium für Bildung und Forschung

Katholische Universität Eichstätt-Ingolstadt

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Bundesministerium für Gesundheit (BMG) (Hrsg.). Beschäftigte in der Pflege; 2018. https://www.bundesgesundheitsministerium.de/themen/pflege/pflegekraefte/beschaeftigte.html#:~:text=Besch%C3%A4ftigte%20in%20der%20Pflege%201%20Statistische%20Daten.%20…,der%20Kranken-%20und%20Altenpflege.%20…%20Weitere%20Artikel…%20.

2. Simon M. Pflegenotstand auf Intensivstationen: Berechnungen zum Ausmaß der Unterbesetzung im Pflegedienst der Intensivstationen deutscher Krankenhäuser. Düsseldorf: Hans-Böckler-Stiftung; 2022. (Study/Hans-Böckler-Stiftung474 (Juni 2022)). https://www.boeckler.de/fpdf/HBS-008331/p_study_hbs_474.pdf.

3. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. The Lancet. 2009;373(9678):1874–82.

4. Fazzini B, Märkl T, Costas C, Blobner M, Schaller SJ, Prowle J, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit Care. 2023;27(1):2.

5. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377–88.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3