Sphingomyelin synthase 2 promotes the stemness of breast cancer cells via modulating NF-κB signaling pathway

Author:

Feng Haizhan,Dong Yahui,Chen Kunling,You Zicong,Weng Junyan,Liang Peiqiao,Shi Fujun

Abstract

Abstract Objectives Multi-drug resistance (MDR) to chemotherapy is the main obstacle influencing the anti-tumor effect in breast cancer, which might lead to the metastasis and recurrence of cancer. Until now, there are still no effective methods that can overcome MDR. In this study, we aimed to investigate the role of sphingomyelin synthase 2 (SMS2) in breast cancer resistance. Methods Quantitative RT-PCR analysis was performed to assess changes in mRNA expression. Western blot analysis was performed to detect protein expression. Inhibitory concentration value of adriamycin (ADR) was evaluated using CCK 8 assay. The stemness ability of breast cancer cells was assessed by spheroid-formation assay. Immunofluorescence staining was conducted to show the cellular distribution of proteins. Breast tumor masses were harvested from the xenograft tumor mouse model. Results SMS2 overexpression increased the IC50 values of breast cancer cells. SMS2 decreased the CD24 transcription level but increased the transcription levels of stemness-related genes including CD44, ALDH, OCT 4 and SOX2 in breast cancer cells. SMS2 overexpression promoted the nuclear translocation of phosphorylated NF-κB, while suppression of SMS2 could inhibit the NF-κB pathway. Conclusions SMS2 increased the stemness of breast cancer cells via NF-κB signaling pathway, leading to resistance to the chemotherapeutic drug ADR. Thus, SMS2 might play a critical role in the development of breast cancer resistance, which is a previously unrecognized mechanism in breast cancer MDR development.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3