Abstract
Abstract
Purpose
Human tau is a highly dynamic, multifunctional protein expressed in different isoforms and conformers, known to modulate microtubule turnover. Tau oligomers are considered pathologic forms of the protein able to initiate specific protein accumulation diseases, called tauopathies. In our study, we investigated the potential association between autophagy and tau oligomers accumulation and its role in the response of prostate cancer cells to docetaxel.
Methods
We evaluated in vitro the expression of tau oligomers in prostate cancer cell lines, PC3 and DU145, in presence of autophagy inhibitors and investigated the role of tau oligomers accumulation in resistance to docetaxel treatment.
Results
Tau protein was basally expressed in prostate cancer lines as several monomeric and oligomeric forms. The pharmacologic inhibition of autophagy induced in cancer cells the accumulation of tau protein, with a prevalent expression of oligomeric forms. Immunofluorescence analysis of untreated cells revealed that tau was visible mainly in dividing cells where it was localized on the mitotic spindle. Inhibition of autophagy determined an evident upregulation of tau signal in dividing cells and the presence of aberrant monoastral mitotic spindles. The accumulation of tau oligomers was associated with DNA DSB and increased cytotoxic effect by docetaxel.
Conclusions
Our data indicate that autophagy could exert a promoting role in cancer growth and during chemotherapy facilitating degradation of tau protein and thus blocking the antimitotic effect of accumulated tau oligomers. Thus, therapeutic strategies aimed at stimulating tau oligomers formation, such as autophagy inhibition, could be an effective adjuvant in cancer therapy.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,General Medicine
Reference75 articles.
1. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98:6923–6928
2. Bougé AL, Parmentier ML (2016) Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech 9:307–319
3. Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, Kroemer G (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23:4353–4361
4. Castillo-Carranza DL, Guerrero-Muñoz MJ, Sengupta U, Hernandez C, Barrett AD, Dineley K, Kayed R (2015) Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimer’s disease mouse model. J Neurosci 35:4857–4868
5. Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 1806:220–229
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献