A novel EIF3C-related CD8+ T-cell signature in predicting prognosis and immunotherapy response of nasopharyngeal carcinoma
-
Published:2024-02-24
Issue:2
Volume:150
Page:
-
ISSN:1432-1335
-
Container-title:Journal of Cancer Research and Clinical Oncology
-
language:en
-
Short-container-title:J Cancer Res Clin Oncol
Author:
Li Rui,Wang Yikai,Wen Xin,Cheng Binglin,Lv Ruxue,Chen Ruzhen,Hu Wen,Wang Yinglei,Liu Jingwen,Lin Bingyi,Zhang Haixiang,Zhang Enting,Tang XinRan
Abstract
Abstract
Purpose
At present, dysfunctional CD8+ T-cells in the nasopharyngeal carcinoma (NPC) tumor immune microenvironment (TIME) have caused unsatisfactory immunotherapeutic effects, such as a low response rate of anti-PD-L1 therapy. Therefore, there is an urgent need to identify reliable markers capable of accurately predicting immunotherapy efficacy.
Methods
Utilizing various algorithms for immune-infiltration evaluation, we explored the role of EIF3C in the TIME. We next found the influence of EIF3C expression on NPC based on functional analyses and RNA sequencing. By performing correlation and univariate Cox analyses of CD8+ Tcell markers from scRNA-seq data, we identified four signatures, which were then used in conjunction with the lasso algorithm to determine corresponding coefficients in the resulting EIF3C-related CD8+ T-cell signature (ETS). We subsequently evaluated the prognostic value of ETS using univariate and multivariate Cox regression analyses, Kaplan–Meier curves, and the area under the receiver operating characteristic curve (AUROC).
Results
Our results demonstrate a significant relationship between low expression of EIF3C and high levels of CD8+ T-cell infiltration in the TIME, as well as a correlation between EIF3C expression and progression of NPC. Based on the expression levels of four EIF3C-related CD8+ T-cell marker genes, we constructed the ETS predictive model for NPC prognosis, which demonstrated success in validation. Notably, our model can also serve as an accurate indicator for detecting immunotherapy response.
Conclusion
Our findings suggest that EIF3C plays a significant role in NPC progression and immune modulation, particularly in CD8+ T-cell infiltration. Furthermore, the ETS model holds promise as both a prognostic predictor for NPC patients and a tool for adjusting individualized immunotherapy strategies.
Funder
National Natural Science Foundation of China Basic and Applied Basic Research Foundation of Guangdong Province Outstanding Youths Development Scheme of Nanfang Hospital, Southern Medical University
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220. https://doi.org/10.1186/s13059-017-1349-1 2. Bai Y, Ding Y, Spencer S, Lasky LA, Bromberg JS (2001) Regulation of the association between PSTPIP and CD2 in murine T cells. Exp Mol Pathol 71(2):115–124. https://doi.org/10.1006/exmp.2001.2388 3. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. https://doi.org/10.1172/JCI46102 4. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, Dawson NA, van der Heijden MS, Dreicer R, Srinivas S, Retz MM, Joseph RW, Drakaki A, Vaishampayan UN, Sridhar SS, Quinn DI, Duran I, Shaffer DR, Eigl BJ, Grivas PD, Yu EY, Li S, Kadel EE 3rd, Boyd Z, Bourgon R, Hegde PS, Mariathasan S, Thastrom A, Abidoye OO, Fine GD, Bajorin DF (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389(10064):67–76. https://doi.org/10.1016/S0140-6736(16)32455-2 5. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautes-Fridman C, Fridman WH, de Reynies A (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218. https://doi.org/10.1186/s13059-016-1070-5
|
|