Preoperative nomogram for predicting spread through air spaces in clinical-stage IA non-small cell lung cancer using 18F-fluorodeoxyglucose positron emission tomography/computed tomography

Author:

Wang Yun,Lyu Deng,Cheng Chao,Zhou Taohu,Tu Wenting,Xiao Yi,Zuo Changjing,Fan Li,Liu Shiyuan

Abstract

Abstract Purpose This study aims to assess the predictive value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiological features and the maximum standardized uptake value (SUVmax) in determining the presence of spread through air spaces (STAS) in clinical-stage IA non-small cell lung cancer (NSCLC). Methods A retrospective analysis was conducted on 180 cases of NSCLC with postoperative pathological assessment of STAS status, spanning from September 2019 to September 2023. Of these, 116 cases from hospital one comprised the training set, while 64 cases from hospital two formed the testing set. The clinical information, tumor SUVmax, and 13 related CT features were analyzed. Subgroup analysis was carried out based on tumor density type. In the training set, univariable and multivariable logistic regression analyses were employed to identify the most significant variables. A multivariable logistic regression model was constructed and the corresponding nomogram was developed to predict STAS in NSCLC, and its diagnostic efficacy was evaluated in the testing set. Results SUVmax, consolidation-to-tumor ratio (CTR), and lobulation sign emerged as the best combination of variables for predicting STAS in NSCLC. Among these, SUVmax and CTR were identified as independent predictors for STAS prediction. The constructed prediction model demonstrated area under the curve (AUC) values of 0.796 and 0.821 in the training and testing sets, respectively. Subgroup analysis revealed a 2.69 times higher STAS-positive rate in solid nodules compared to part-solid nodules. SUVmax was an independent predictor for predicting STAS in solid nodular NSCLC, while CTR and an emphysema background were independent predictors for STAS in part-solid nodular NSCLC. Conclusion Our nomogram based on preoperative 18F-FDG PET/CT radiological features and SUVmax effectively predicts STAS status in clinical-stage IA NSCLC. Furthermore, our study highlights that metabolic parameters and CT variables associated with STAS differ between solid and part-solid nodular NSCLC.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

National Key R&D Program of China

Clinical Innovative Project of Shanghai Changzheng Hospital

Program of Science and Technology Commission of Shanghai Municipality

Key Program of National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Plan Program

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Aly RG, Rekhtman N, Li X, Takahashi Y, Eguchi T, Tan KS, Rudin CM, Adusumilli PS, Travis WD (2019) Spread through air spaces (STAS) is prognostic in atypical carcinoid, large cell neuroendocrine carcinoma, and small cell carcinoma of the lung. J Thorac Oncol 14(9):1583–1593. https://doi.org/10.1016/j.jtho.2019.05.009

2. Bains S, Eguchi T, Warth A, Yeh YC, Nitadori JI, Woo KM, Chou TY, Dienemann H, Muley T, Nakajima J, Shinozaki-Ushiku A, Wu YC, Lu S, Kadota K, Jones DR, Travis WD, Tan KS, Adusumilli PS (2019) Procedure-specific risk prediction for recurrence in patients undergoing lobectomy or sublobar resection for small (≤2 cm) lung adenocarcinoma: an international cohort analysis. J Thorac Oncol 14(1):72–86. https://doi.org/10.1016/j.jtho.2018.09.008

3. Chen Y, Jiang C, Kang W, Gong J, Luo D, You S, Cheng Z, Luo Y, Wu K (2022) Development and validation of a CT-based nomogram to predict spread through air space (STAS) in peripheral stage IA lung adenocarcinoma. Jpn J Radiol 40(6):586–594. https://doi.org/10.1007/s11604-021-01240-3

4. de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, Boerman OC, Oyen WJ (2007) Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 55(1):79–87. https://doi.org/10.1016/j.lungcan.2006.08.018

5. Dercle L, Fronheiser M, Lu L, Du S, Hayes W, Leung DK, Roy A, Wilkerson J, Guo P, Fojo AT, Schwartz LH, Zhao B (2020) Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res 26(9):2151–2162. https://doi.org/10.1158/1078-0432.CCR-19-2942

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STAS: New explorations and challenges for thoracic surgeons;Clinical and Translational Oncology;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3