Author:
Zhang Guoying,Wang Tianjun,Huang Zihui,Chen Yuanyuan,Sun Li,Xia Xia,He Fang,Fan Chenying,Wang Shukui,Liu Wanli
Abstract
Abstract
Purpose
The angiogenesis is among the primary factors that affect tumor recurrence and distant organ metastasis in colorectal cancer (CRC). N6-methyladenosine (m6A) modification is one of the most common chemical modifications in eukaryotic mRNA, especially at the post-transcriptional level. Methyltransferase-like 3 (METTL3) promoting angiogenesis in a variety of tumors has been reported. However, the mechanism of how METTL3 dual-regulates the stability of long non-coding RNAs (lncRNAs) and vascular-related factor RNAs to affect angiogenesis in CRC is unclear.
Methods
64 paired CRC and adjacent normal tissues were collected. In vitro, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), actinomycin assay, methylated RNA immunoprecipitation (MeRIP) experiment,3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and colony formation assay were performed. The functions were also studied in zebrafish model animals in vivo.
Results
We found that the vascular endothelial growth factor A(VEGFA), METTL3 and LINC00662 RNAs were highly expressed in CRC, and that METTL3 was significantly positively correlated with LINC00662 and VEGFA. The protein expression levels of CD31, CD34, VEGFA, m6A and METTL3 were all significantly increased in the CRC tissues. The angiogenesis experiments both in vivo and in vitro found that METTL3 and LINC00662 promoted angiogenesis in CRC. The actinomycin assay indicated that METTL3 maintained the stability of LINC00662 and VEGFA RNAs. In addition, the MeRIP experiment confirmed that the LINC00662 and VEGFA RNAs had METTL3-enriched sites.
Conclusion
These findings suggest that METTL3 and LINC00662 may both serve as diagnostic and prognostic predictive biomarkers for CRC and potential targets for anti-vascular therapy.
Funder
Nanjing Health Youth Talent Project
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献