Mechanism study of lncRNA RMRP regulating esophageal squamous cell carcinoma through miR-580-3p/ATP13A3 axis

Author:

Tan ZiRui,Luan ShengJie,Wang XiaoPeng,Jiao WenPeng,Jiang Pu

Abstract

Abstract Objective It is well-known that lncRNAs regulate energy metabolism in tumors. This study focused on the action of RMRP on esophageal squamous cell carcinoma (ESCC) cell proliferation, apoptosis, and glycolysis. Methods In the resected ESCC tissues and adjacent tissues from patients, RMRP/miR-580-3p/ATP13A3 expressions were evaluated. ESCC cell proliferation rates and apoptotic rates were measured by CCK-8 and flow cytometry, respectively. Apoptosis related markers were examined by Western blot. Moreover, glucose uptake, lactic acid, and ATP were measured by commercial kits, whereas HK2 and PKM2 were evaluated by Western blot to study ESCC cell glycolysis. Finally, the editing program of RMRP/miR-580-3p/ATP13A3 was translated by luciferase reporter assay and RIP analysis. Results RMRP and ATP13A3 were induced, while miR-580-3p was reduced in their expression in ESCC tissues. Silencing RMRP reduced proliferation, glycolysis, and anti-apoptosis ability of ESCC cells. RMRP sequestered miR-580-3p to target ATP13A3. Silenced ATP13A3 or overexpressed miR-580-3p rescued overexpressed RMRP-mediated promotion of proliferation, glycolysis, and anti-apoptosis of ESCC cells. Conclusion RMRP accelerates ESCC progression through the miR-580-3p/ATP13A3 axis, renewing a reference for lncRNA-based therapies for tumors.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3