Elevated histone deacetylase 10 expression promotes the progression of clear cell renal cell carcinoma by Notch-1-PTEN signaling axis

Author:

Zheng Bin,Jiang Xue,Liu Yaqing,Cheng Fajuan,Zhang Yiming,Niu Chengtao,Cong Zixiang,Niu Zhihong,He Wei

Abstract

Abstract Background Clear cell renal cell carcinoma (ccRCC), the most common pathological subtype of kidney cancer, accounts for approximately 70% to 80% of all cases. Histone deacetylase 10 (HDAC10) belongs to the HDAC class IIb subgroup, one of the histone deacetylases (HDAC) family. Previous studies suggest that HDAC10 may regulate the development of multiple tumor types. The specific molecular mechanisms employed by HDAC10 in the etiology of ccRCC still need to be discovered. Methods The analysis included examining HDAC10 expression levels and their clinical importance within a cohort of inpatients and ccRCC patients documented in the Tumor Genome Atlas (TCGA). Moreover, the biological functions and underlying molecular mechanisms of HDAC10 were investigated. Results HDAC10 showed increased expression in ccRCC tumor tissues. Subsequent analysis revealed overexpression of HDAC10 was associated with advanced clinical phenotype and unfavorable prognosis. The absence of HDAC10 significantly decreased ccRCC cell proliferation and migration capabilities. Mechanistic research suggests that HDAC10 may promote RCC development by activating the Notch-1 pathway and downregulating PTEN expression levels. Conclusion In summary, HDAC10 can modulate critical biological processes in ccRCC, including proliferation, migration, and apoptosis. Notably, the Notch-1 pathway and PTEN serve as crucial signaling pathways and target genes through which HDAC10 regulates the progression of ccRCC. These findings offer a novel outlook for ccRCC treatment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3