Construction of a novel nomogram based on competing endogenous RNAs and tumor-infiltrating immune cells for prognosis prediction in elderly patients with colorectal cancer

Author:

Tao Zhimin,Li Bo,Kang Chunyan,Wang Wei,Li Xianzhe,Du Yaowu

Abstract

AbstractCompetitive endogenous RNAs (ceRNAs) and tumor-infiltrating immune cells play essential roles in colorectal cancer (CRC) tumorigenesis. However, their prognostic role in elderly patients with CRC is unclear. Gene expression profiles and clinical information for elderly patients with CRC were downloaded from The Cancer Genome Atlas. Univariate, LASSO, and multivariate Cox regression analyses were utilized for screening key ceRNAs and prevent overfitting. A total of 265 elderly patients with CRC were included. We constructed a novel ceRNA network consisting of 17 lncRNAs, 35 miRNAs, and 5 mRNAs. We established three prognosis predictive nomograms based on four key ceRNAs (ceRNA nomogram), five key immune cells (immune cell nomogram), and their combination (ceRNA-immune cell nomogram). Among them, the ceRNA-immune cell nomogram had the best accuracy. Furthermore, the areas under the curve of the ceRNA-immune cell nomogram were also significantly greater than the TNM stage at 1 (0.818 vs. 0.693), 3 (0.865 vs. 0.674), and 5 (0.832 vs. 0.627) years. Co-expression analysis revealed that CBX6 was positively correlated with activated dendritic cells (R = 0.45, p < 0.01), whereas negatively correlated with activated mast cells (R =− 0.43, p < 0.01). In conclusion, our study constructed three nomograms to predict prognosis in elderly patients with CRC, among which the ceRNA-immune cell nomogram had the best prediction accuracy. We inferred that the mechanism underlying the regulation of activated dendritic cells and mast cells by CBX6 might play a crucial role in tumor development and prognosis of elderly patients with CRC.

Funder

Henan Provincial Science and Technology Research Project

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3