Prognostic and immunological significance of metastasis-associated protein 3 in patients with thymic epithelial tumors

Author:

Li Jinping,Deng Zhenyan,Liu Yu,Jin Jiamin,Xie Chichu,Gan Jinfeng

Abstract

Abstract Background Immune checkpoint inhibitors have shown promising anticancer activity and have recently been proposed as a therapy for thymic epithelial tumors (TETs); however, this treatment is only effective for a subgroup of TET patients. Thus, this study aims to identify the potential genes implicated in the regulation of cancer immunity in TETs. Methods The TETs RNA-seq and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The clinical significance of the tumor microenvironment (TME) in TETs was evaluated. Weighted gene coexpression network analysis (WGCNA) was used to identify the immune response-related hub genes. The expression of metastasis-associated protein 3 (MTA3) in TETs was investigated in public datasets and a patient cohort. Kaplan‒Meier curves were generated to analyze the prognostic value of various factors. The Tumor Immune Estimation Resource (TIMER2.0) was used to estimate the relevance of MTA3 to immune cell infiltration. Gene set enrichment analysis (GSEA) and pathway enrichment analysis were applied to explore the MTA3-related pathways. Results The TME was found to be clinically significant in TETs. Moreover, MTA3 was identified as a key gene associated with the immune score, and lower MTA3 expression was linked to poor TME and reduced cytotoxic activity in TETs. Furthermore, MTA3 was found to be deregulated in TETs, predictive of poor prognosis. MTA3 was also significantly associated with the infiltration levels of various immune cell types and highly correlated with their corresponding markers. Notably, MTA3 was positively associated with various immune response pathways. Conclusion MTA3 is clinically significant in TETs and correlated with immune cell infiltration. Thus, MTA3 might be a biomarker for predicting the prognosis and immune status of TET patients.

Funder

National Natural Science Foundation of China

The innovative project of Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3