A risk score model based on lipid metabolism-related genes could predict response to immunotherapy and prognosis of lung adenocarcinoma: a multi-dataset study and cytological validation

Author:

Lei Yangyang,Zhou Boxuan,Meng Xiangzhi,Liang Mei,Song Weijian,Liang Yicheng,Gao Yushun,Wang Minghui

Abstract

Abstract Background Lipid metabolism is a key factor in tumorigenesis and drug resistance, and models related to lipid metabolism have shown potential to predict survival and curative effects of adjuvant therapy in various cancers. However, the relationship between lipid metabolism and prognosis and treatment response of lung adenocarcinoma (LUAD) are still unclear. Methods We enrolled seven bulk RNA-sequence datasets (GSE37745, GSE19188, GSE30219, GSE31547, GSE41271, GSE42127, and GSE72094) from the GEO database and one single-cell RNA-sequencing dataset (GSE117570) from the TISCH2 database. Non-negative matrix factorization (NMF) was utilized to construct the risk score model based on lipid score calculated by GSVA algorithm. Phs000452.v3, PMID: 26359337, PMID: 32472114, PRJEB23709 datasets were used to test the response to immunotherapy. Drug sensitivity analysis was assessed according to the GDSC database, and immunotherapy response was evaluated using the Wilcoxon test. Cellular function assays including clone formation, EDU assays and flow cytometry were implemented to explore the phenotype alteration caused by the knockdown of PTDSS1, which is one of key gene in risk score model. Results We analyzed both bulk and single-cell RNA sequencing data to establish and validate a risk score model based on 18 lipid metabolism-related genes with significant impact on prognosis. After divided the patients into two groups according to risk score, we identified differences in lipid-related metabolic processes and a detailed portrait of the immune landscapes of high- and low-risk groups. Moreover, we investigated the potentials of our risk score in predicting response to immunotherapy and drug sensitivity. In addition, we silenced PTDSS1 in LUAD cell lines, and found that the proliferation of the cells was weakened, and the apoptosis of the cells was increased. Conclusion Our study highlights the crucial roles of lipid metabolism in LUAD and provides a reliable risk score model, which can aid in predicting prognosis and response to immunotherapy. Furthermore, we investigated the roles of PTDSS1 in LUAD carcinogenesis, which showed that PTDSS1 regulated proliferation and apoptosis of LUAD cells.

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Reference21 articles.

1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

2. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, Powell CA, Beer D, Riely G, Garg K, Austin JH, Rusch VW, Hirsch FR, Jett J, Yang PC, Gould M. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc. 2011;8(5):381–5.

3. Meza R, Meernik C, Jeon J, Cote, ML. Lung cancer incidence trends by gender, race and histology in the United States, 1973-2010. PloS One. 2015;10(3):e0121323.

4. Seguin L, Durandy M, Feral CC. Lung adenocarcinoma tumor origin: a guide for personalized medicine. Cancers. 2022;14(7):1759.

5. Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun. 2018;38(1):27.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3