Author:
Barnes David,Greenlees J. P. C.,Kędziorek Magdalena
Abstract
AbstractEquipping a non-equivariant topological $$\text {E}_\infty $$
E
∞
-operad with the trivial G-action gives an operad in G-spaces. For a G-spectrum, being an algebra over this operad does not provide any multiplicative norm maps on homotopy groups. Algebras over this operad are called naïve-commutative ring G-spectra. In this paper we take $$G=SO(2)$$
G
=
S
O
(
2
)
and we show that commutative algebras in the algebraic model for rational SO(2)-spectra model rational naïve-commutative ring SO(2)-spectra. In particular, this applies to show that the SO(2)-equivariant cohomology associated to an elliptic curve C of Greenlees (Topology 44(6):1213–1279, 2005) is represented by an $$\text {E}_\infty $$
E
∞
-ring spectrum. Moreover, the category of modules over that $$\text {E}_\infty $$
E
∞
-ring spectrum is equivalent to the derived category of sheaves over the elliptic curve C with the Zariski torsion point topology.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Barnes, D.: Splitting monoidal stable model categories. J. Pure Appl. Algebra 213(5), 846–856 (2009)
2. Barnes, D.: A monoidal algebraic model for rational $$SO(2)$$-spectra. Math. Proc. Camb. Philos. Soc. 161(1), 167–192 (2016)
3. Bergner, J.E.: Homotopy fiber products of homotopy theories. Isr. J. Math. 185, 389–411 (2011)
4. Barnes, D., Greenlees, J.P.C., Kędziorek, M.: An algebraic model for rational naïve-commutative $$G$$-equivariant ring spectra for finite $$G$$. Homol Homotopy Appl. 21(1), 73–93 (2018)
5. Barnes, D., Greenlees, J.P.C., Kędziorek, M., Shipley, B.: Rational $${\rm SO}(2)$$-equivariant spectra. Algebr. Geom. Topol. 17(2), 983–1020 (2017)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献