Abstract
AbstractStarting from an anti-symplectic involution on a K3 surface, one can consider a natural Lagrangian subvariety inside the moduli space of sheaves over the K3. One can also construct a Prymian integrable system following a construction of Markushevich–Tikhomirov, extended by Arbarello–Saccà–Ferretti, Matteini and Sawon–Shen. In this article we address a question of Sawon, showing that these integrable systems and their associated natural Lagrangians degenerate, respectively, into fix loci of involutions considered by Heller–Schaposnik, García-Prada–Wilkin and Basu–García-Prada. Along the way we find interesting results such as the proof that the Donagi–Ein–Lazarsfeld degeneration is a degeneration of symplectic varieties, a generalization of this degeneration, originally described for K3 surfaces, to the case of an arbitrary smooth projective surface, and a description of the behaviour of certain involutions under this degeneration.
Funder
Universidad Politécnica de Madrid
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Arbarello, E., Saccà, G., Ferretti, A.: Relative Prym varieties associated to the double cover of an Enriques surface. J. Differ. Geom. 100, 191–250 (2015)
2. Baraglia, D., Schaposnik, L.P.: Higgs bundles and (A, B, A)-branes. Comm. Math. Phys. 331, 1271–1300 (2014)
3. Basu, S., García-Prada O.: Finite group actions on Higgs bundle moduli spaces and twisted equivariant structures. arXiv:2011.04017
4. Beauville, A.: Variétés kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)
5. Beauville, Systèmes hamiltoniens complètement intégrables associés aux surfaces K3. Symp. Math. (1991)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献