Author:
Caspers Martijn,van Velthoven Jordy Timo
Abstract
AbstractLet $$\pi _{\alpha }$$
π
α
be a holomorphic discrete series representation of a connected semi-simple Lie group G with finite center, acting on a weighted Bergman space $$A^2_{\alpha } (\Omega )$$
A
α
2
(
Ω
)
on a bounded symmetric domain $$\Omega $$
Ω
, of formal dimension $$d_{\pi _{\alpha }} > 0$$
d
π
α
>
0
. It is shown that if the Bergman kernel $$k^{(\alpha )}_z$$
k
z
(
α
)
is a cyclic vector for the restriction $$\pi _{\alpha } |_{\Gamma }$$
π
α
|
Γ
to a lattice $$\Gamma \le G$$
Γ
≤
G
(resp. $$(\pi _{\alpha } (\gamma ) k^{(\alpha )}_z)_{\gamma \in \Gamma }$$
(
π
α
(
γ
)
k
z
(
α
)
)
γ
∈
Γ
is a frame for $$A^2_{\alpha }(\Omega )$$
A
α
2
(
Ω
)
), then $${{\,\mathrm{vol}\,}}(G/\Gamma ) d_{\pi _{\alpha }} \le |\Gamma _z|^{-1}$$
vol
(
G
/
Γ
)
d
π
α
≤
|
Γ
z
|
-
1
. The estimate $${{\,\mathrm{vol}\,}}(G/\Gamma ) d_{\pi _{\alpha }} \ge |\Gamma _z|^{-1}$$
vol
(
G
/
Γ
)
d
π
α
≥
|
Γ
z
|
-
1
holds for $$k^{(\alpha )}_z$$
k
z
(
α
)
being a $$p_z$$
p
z
-separating vector (resp. $$(\pi _{\alpha } (\gamma ) k^{(\alpha )}_z)_{\gamma \in \Gamma / \Gamma _z}$$
(
π
α
(
γ
)
k
z
(
α
)
)
γ
∈
Γ
/
Γ
z
being a Riesz sequence in $$A^2_{\alpha } (\Omega )$$
A
α
2
(
Ω
)
). These estimates improve on general density theorems for restricted discrete series through the dependence on the stabilizers, while recovering in part sharp results for $$G ={\mathrm {PSU}}(1, 1)$$
G
=
PSU
(
1
,
1
)
.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Atiyah, M., Schmid, W.: A geometric construction of the discrete series for semisimple Lie groups. Invent. Math. 42, 1–62 (1977)
2. Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras. In: Colloque “Analyse et Topologie” en l’honneur de Henri Cartan, pp. 43–72. Société Mathématique de France (SMF), Paris (1976)
3. Bagchi, B., Misra, G.: The homogeneous shifts. J. Funct. Anal. 204(2), 293–319 (2003)
4. Bekka, B.: Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl. 10(4), 325–349 (2004)
5. Dixmier, J.: Von Neumann Algebras, vol. 27. Elsevier (North-Holland), Amsterdam (1981)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献