Author:
Chen Chih-Whi,Coulembier Kevin,Mazorchuk Volodymyr
Abstract
AbstractWe prove that the tensor product of a simple and a finite dimensional $${\mathfrak {sl}}_n$$
sl
n
-module has finite type socle. This is applied to reduce classification of simple $${\mathfrak {q}}(n)$$
q
(
n
)
-supermodules to that of simple $${\mathfrak {sl}}_n$$
sl
n
-modules. Rough structure of simple $${\mathfrak {q}}(n)$$
q
(
n
)
-supermodules, considered as $${\mathfrak {sl}}_n$$
sl
n
-modules, is described in terms of the combinatorics of category $${\mathcal {O}}$$
O
.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Beilinson, A., Bernštein, I.N.: Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math. 292(1), 15–18 (1981)
2. Bell, A., Farnsteiner, R.: On the theory of Frobenius extensions and its application to Lie superalgebras. Trans. Am. Math. Soc. 335(1), 407–424 (1993)
3. Bernstein, J., Gelfand, S.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41(2), 245–285 (1980)
4. Bernstein, I., Gelfand, I., Gelfand, S.: A certain category of $${\mathfrak{g}}$$-supermodules. Funkc. Anal. i Priloz. 10, 1–8 (1976)
5. Block, R.: The irreducible representations of the Lie algebra $${\mathfrak{sl}}(2)$$ and of the Weyl algebra. Adv. Math. 39, 69–110 (1981)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献