Author:
Occhetta Gianluca,Romano Eleonora A.,Solá Conde Luis E.,Wiśniewski Jarosław A.
Abstract
AbstractIn this paper, we study varieties admitting torus actions as geometric realizations of birational transformations. We present an explicit construction of these geometric realizations for a particular class of birational transformations, and study some of their geometric properties, such as their Mori, Nef and Movable cones.
Funder
Università degli Studi di Genova
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572 (2002)
2. Barban, L., Romano, E.A.: Toric non-equalized flips associated to $${\mathbb{C}} ^*$$-actions. arXiv:2104.14442 (Preprint) (2021)
3. Beltrametti, M.C., Sommese, A.J.: The Adjunction Theory of Complex Projective Varieties. De Gruyter Expositions in Mathematics, vol. 16. Walter de Gruyter & Co., Berlin (1995)
4. Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 2(98), 480–497 (1973)
5. Białynicki-Birula, A., Świȩcicka, J.: Complete quotients by algebraic torus actions. In: Group Actions and Vector Fields (Vancouver, B.C., 1981), Volume 956 of Lecture Notes in Mathematics, pp. 10–22. Springer, Berlin (1982)