Shipping operations support in the “High North”: examining availability of icebreakers along the Northern Sea Route

Author:

Dalaklis DimitriosORCID,Drewniak Megan L.,Schröder-Hinrichs Jens-Uwe

Abstract

Abstract A rather significant number of business entities already operate within (or, have considered to exploit) the Arctic region, focusing upon previously untapped resources such as precious minerals and large quantities of oil and gas; touristic and fishing activities are clearly on the rise, with various endeavors of maritime transport also being put forward. Up until recently, harsh year-long environmental conditions have significantly hindered the necessary access and transport connections in the Arctic. Even in the case that weather conditions did permit vessels’ passage, unreliable navigational aids and lack of infrastructure/support provided obstacles difficult to overcome. However, environmental data recorded during the last couple of decades clearly indicates that there is a continuous decline of ice coverage in the “High North.” Given this steady decline, the Arctic has now been viewed as a promising field for economic activities and is considered as a potential connecting corridor between Asia and Europe/America (and vice-versa). As human presence and operations are expected to intensify there, it is of utmost importance to evaluate the current level of support towards ships that will be crossing the region; capabilities in relation to search and rescue (SAR) operations and oil spill response are also important. The analysis in hand will first deliver a discussion of the so-called Arctic Passages. While various different maritime routes have been proposed in relation to the Arctic, the most promising one, the Northern Sea Route (NSR), will provide the epicenter of discussion. Through an extensive literature review that includes numerous internet resources, the current analysis will identify the numbers of icebreakers already operating in the NSR, as well as those that will be commissioned into service in the near future. The choice to research the specific type of vessels is supported by a simple argument: icebreakers currently are and will continue to be in the foreseeable future the main “tool” to support shipping activities in the Arctic. Furthermore, emergency management capabilities in the Russian Arctic will be examined to include the current state of rescue coordination centres along with the availability of SAR assets. Additionally, the efforts thus far by the Arctic Council to increase coordination and interaction among the States involved in Arctic affairs will be summarized; the latter will be achieved via a brief review of a very important legally binding agreement: the “search and rescue” instrument. In conclusion, the Russian State has already heavily invested in icebreakers’ building and their current number is fully capable to handle the present level of limited traffic. On the other hand, ships are currently faced with long distances to cross (often without adequate support) adverse environmental conditions, unpredictable hurdles, and slow response times in case of an emergency. Therefore, in case ships operating in the region are increased, it will be difficult to deal with all the additional demands for support. Of particular interest is the fact that considering the vast area of the NSR, the overall available response capabilities in the region under discussion are rather thin; any further increase of maritime traffic in the “High North” must be balanced with additional strengthening of emergency management capabilities. In any case, should the NSR become fully integrated in the global maritime transport system, Russia’s geopolitical status will be clearly improved and further research is needed to discuss the implications both at the regional and global levels.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Transportation,Human Factors and Ergonomics

Reference41 articles.

1. Arctic Council (2009) Arctic Marine Shipping Assessment 2009 Report, available online: www.pmel.noaa.gov/arctic-zone/detect/documents/AMSA_2009_Report_2nd_print.pdf

2. Barnhart KR, Miller CR, Overeem I, Kay JE (2015) Mapping the future expansion of Arctic open water. Nat Clim Chang 6:280–285. https://doi.org/10.1038/nclimate2848

3. Bennett MM (2014) North by Northeast: toward an Asian-Arctic region, available online: http://www.tandfonline.com/doi/abs/10.1080/15387216.2014.936480

4. Borsch OJ, Andreassen N, Marchenko N, Ingimundarson V, Gunnarsdottir H, Ludin L, Petrov S, Jacobsen U, and Dali BI (2016) Maritime activity in the High North–current and estimated level up to 2025. MARPART Project Report 1, Nord Universitet, Bodo, 2016

5. Cariou P, Faury O (2015) Relevance of the Northern Sea Route (NSR) for bulk shipping. Transp Res A 78:337–346

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3