1. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv:abs/1610.05492 (2016)
2. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. In: International Conference on Learning Representations. https://openreview.net/forum?id=rJl-b3RcF7 (2019)
3. McMahan, H. B., Moore, E., Ramage, D., Arcas, B. A.: Federated learning of deep networks using model averaging. arXiv:abs/1602.05629 (2016)
4. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR. https://proceedings.mlr.press/v54/mcmahan17a.html (2017)
5. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. arXiv:abs/1902.04885 (2019)