PerHeFed: A general framework of personalized federated learning for heterogeneous convolutional neural networks

Author:

Ma Le,Liao YuYing,Zhou Bin,Xi Wen

Abstract

AbstractIn conventional federated learning, each device is restricted to train a network model of the same structure. This greatly hinders the application of federated learning where the data and devices are quite heterogeneous because of their different hardware equipment and communication networks. At the same time, existing studies have shown that transmitting all of the model parameters not only has heavy communication costs, but also increases risk of privacy leakage. We propose a general framework for personalized federated learning (PerHeFed), which enables the devices to design their local model structures autonomously and share sub-models without structural restrictions. In PerHeFed, a simple-but-effective mapping relation and a novel personalized sub-model aggregation method are proposed for heterogeneous sub-models to be aggregated. By dividing the aggregations into two primitive types (i.e., inter-layer and intra-layer), PerHeFed is applicable to any combination of heterogeneous convolutional neural networks, and we believe that this can satisfy the personalized requirements of heterogeneous models. Experiments show that, compared to the state-of-the-art method (e.g., FLOP), in non-IID data sets our method compress ≈ 50% of the shared sub-model parameters with only a 4.38% drop in accuracy on SVHN dataset and on CIFAR-10, PerHeFed even achieves a 0.3% improvement in accuracy. To the best of our knowledge, our work is the first general personalized federated learning framework for heterogeneous convolutional networks, even cross different networks, addressing model structure unity in conventional federated learning.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference39 articles.

1. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv:abs/1610.05492 (2016)

2. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. In: International Conference on Learning Representations. https://openreview.net/forum?id=rJl-b3RcF7 (2019)

3. McMahan, H. B., Moore, E., Ramage, D., Arcas, B. A.: Federated learning of deep networks using model averaging. arXiv:abs/1602.05629 (2016)

4. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR. https://proceedings.mlr.press/v54/mcmahan17a.html (2017)

5. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. arXiv:abs/1902.04885 (2019)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3