Crown allometry and growing space requirements of four rare domestic tree species compared to oak and beech: implications for adaptive forest management

Author:

Schmucker JuliaORCID,Uhl Enno,Steckel Mathias,Pretzsch Hans

Abstract

AbstractRare domestic tree species are increasingly being viewed as promising alternatives and additions to current main tree species in forests facing climate change. For a feasible management of these rare species, it is, however, necessary to know their growth patterns and space requirements. This information has been lacking in management and science up to now. Our study investigated the basic crown allometries of four rare domestic tree species (European hornbeam, European white elm, field maple and wild service tree) and compared them to the more established and assessable European beech and oak (sessile oak and pedunculate oak). For our analysis, we used data from eight temporary research plots located on seven sites across south-eastern Germany, augmented by data from long-term plots. Using quantile regression, we investigated the fundamental relationships between crown projection area and diameter, and height and diameter. Subsequently, we used a mixed-effect model to detect the dependence of crown allometry on different stand variables. We derived maximum stem numbers per hectare for each species at different stand heights, thus providing much-needed practical guidelines for forest managers. In the early stages of stand development, we found that European white elm and field maple can be managed with higher stem numbers than European beech, similar to those of oak. European hornbeam and wild service tree require lower stem numbers, similar to European beech. However, during first or second thinnings, we hypothesise that the rare domestic tree species must be released from competitors, as shade tolerance and competitiveness decrease with age. Furthermore, we argue that thinnings must be performed at a higher frequency in stands with admixed European beech because of the species’ high shade tolerance. When properly managed, rare species can reach target diameters similar to oak and beech.

Funder

Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3