Deep-Learning Based Detection for Cyber-Attacks in IoT Networks: A Distributed Attack Detection Framework

Author:

Jullian Olivia,Otero Beatriz,Rodriguez Eva,Gutierrez Norma,Antona Héctor,Canal Ramon

Abstract

AbstractThe widespread use of smart devices and the numerous security weaknesses of networks has dramatically increased the number of cyber-attacks in the internet of things (IoT). Detecting and classifying malicious traffic is key to ensure the security of those systems. This paper implements a distributed framework based on deep learning (DL) to prevent many different sources of vulnerability at once, all under the same protection system. Two different DL models are evaluated: feed forward neural network and long short-term memory. The models are evaluated with two different datasets (i.e.NSL-KDD and BoT-IoT) in terms of performance and identification of different kinds of attacks. The results demonstrate that the proposed distributed framework is effective in the detection of several types of cyber-attacks, achieving an accuracy up to 99.95% across the different setups.

Funder

Generalitat de Catalunya

HORIZON Vitamin-V

HORIZON-AG PHOENIX

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Strategy and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference27 articles.

1. Lab, W.T.: Internet security report: WatchGuard’s threat lab analyzes the latest malware and internet attacks. Technical report (Q3 2020). https://www.watchguard.com/wgrd-resource-center/security-report-q3-2020. Accessed 17 Mar 2021

2. Cherdantseva, Y., Hilton, J.: A reference model of information assurance security. In: 2013 International Conference on Availability, Reliability and Security, pp. 546–555 (2013). https://doi.org/10.1109/ARES.2013.72

3. Kwon, D., Kim, H., Kim, J., Suh, S., Kim, I., Kim, J.: A survey of deep learning-based network anomaly detection. Clust. Comput. 22(5), 949–961 (2019)

4. Anderson, J., Carbonell, J., Mitchell, T., Michalski, R., Amarel, S., Tecuci, T., Kodratoff, Y.: Machine Learning: An Artificial Intelligence Approach. M. Kaufmann, Los Altos, CA (1983)

5. Kilincer, I., Ertam, F., Sengur, A.: Machine learning methods for cyber security intrusion detection: datasets and comparative study. Comput. Netw. 188, 107840 (2021). https://doi.org/10.1016/j.comnet.2021.107840

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3