Collaborative Problem-Solving in Knowledge-Rich Domains: A Multi-Study Structural Equation Model

Author:

Brandl LauraORCID,Stadler Matthias,Richters Constanze,Radkowitsch Anika,Fischer Martin R.,Schmidmaier Ralf,Fischer Frank

Abstract

AbstractCollaborative skills are crucial in knowledge-rich domains, such as medical diagnosing. The Collaborative Diagnostic Reasoning (CDR) model emphasizes the importance of high-quality collaborative diagnostic activities (CDAs; e.g., evidence elicitation and sharing), influenced by content and collaboration knowledge as well as more general social skills, to achieve accurate, justified, and efficient diagnostic outcomes (Radkowitsch et al., 2022). However, it has not yet been empirically tested, and the relationships between individual characteristics, CDAs, and diagnostic outcomes remain largely unexplored. The aim of this study was to test the CDR model by analyzing data from three studies in a simulation-based environment and to better understand the construct and the processes involved (N = 504 intermediate medical students) using a structural equation model including indirect effects. We found various stable relationships between individual characteristics and CDAs, and between CDAs and diagnostic outcome, highlighting the multidimensional nature of CDR. While both content and collaboration knowledge were important for CDAs, none of the individual characteristics directly related to diagnostic outcome. The study suggests that CDAs are important factors in achieving successful diagnoses in collaborative contexts, particularly in simulation-based settings. CDAs are influenced by content and collaboration knowledge, highlighting the importance of understanding collaboration partners’ knowledge. We propose revising the CDR model by assigning higher priority to collaboration knowledge compared with social skills, and dividing the CDAs into information elicitation and sharing, with sharing being more transactive. Training should focus on the development of CDAs to improve CDR skills.

Funder

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CSCL: a learning and collaboration science?;International Journal of Computer-Supported Collaborative Learning;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3