1. Brink, H., Richards, J., Fetherolf, M.: Real-world Machine Learning. Simon and Schuster, New York (2016)
2. Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 160 (2021)
3. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019)
4. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias-ProPublica (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed 16 Oct 2023
5. Raji, I.D., Buolamwini, J.: Actionable auditing: investigating the impact of publicly naming biased performance results of commercial AI products. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, pp. 429–435 (2019)