Can we trust machine learning to predict the credit risk of small businesses?

Author:

Bitetto Alessandro,Cerchiello Paola,Filomeni StefanoORCID,Tanda Alessandra,Tarantino Barbara

Abstract

AbstractWith the emergence of Fintech lending, small firms can benefit from new channels of financing. In this setting, the creditworthiness and the decision to extend credit are often based on standardized and advanced machine-learning techniques that employ limited information. This paper investigates the ability of machine learning to correctly predict credit risk ratings for small firms. By employing a unique proprietary dataset on invoice lending activities, this paper shows that machine learning techniques overperform traditional techniques, such as probit, when the set of information available to lenders is limited. This paper contributes to the understanding of the reliability of advanced credit scoring techniques in the lending process to small businesses, making it a special interesting case for the Fintech environment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3