A model for contact and friction between beams under large deformation and sheaves

Author:

Ntarladima KonstantinaORCID,Pieber MichaelORCID,Gerstmayr JohannesORCID

Abstract

AbstractThis work focuses on the modeling of contact between sheaves and flexible axially moving beams. A two-dimensional beam finite element is employed, based on the absolute nodal coordinate formulation (ANCF) with an improved selective reduced integration for the virtual work of elastic and viscous damping forces. For the efficient modeling of contact between flexible axially moving beams and sheaves in systems such as belt-drives or reeving systems, a number of newly developed algorithms is presented. The computation of normal contact is based on a penalty formulation using a spring-damper model, while for the efficient contact detection a bounding box which fits the exact dimensions of the finite elements is employed. For the detection and computation of contact, the beam elements are divided into linear segments. The modeling of tangential contact is based on a bristle model for friction extended for being compatible with an implicit time integration. A numerical example of a belt drive showed good convergence and agreement with analytical solutions.

Funder

H2020 Marie Sklodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3