Neural coupling mechanism in fMRI hemodynamics

Author:

Peng Jun,Wang Yihong,Wang RubinORCID,Kong Wanzeng,Zhang Jianhai

Abstract

AbstractNeural activity alters with the changes in cerebral blood flow (CBF) and blood oxygen saturation. Despite that these changes can be detected with functional magnetic resonance imaging (fMRI), the underlying physiological mechanism remains obscure. Upon activation of the specific brain region, CBF increases substantially, albeit with 6–8 s delay. Neuroscience has no scientific explanation for this experimental discovery yet. This study proposed a physiological mechanism for generating hemodynamic phenomena from the perspective of energy metabolism. The ratio of reduction (NADH) and oxidation states (NAD+) of nicotinamide adenine dinucleotide in cell was considered as the variable for CBF regulation. After the specific brain region was activated, brain glycogen was rapidly consumed as reserve energy, resulting in no significant change in the ratio of NADH and NAD+ concentrations. However, when the stored energy in the cell is exhausted, the dynamic equilibrium state of the transition between NADH and NAD + is changed, and the ratio of NADH and NAD+ concentrations is significantly increased, which regulates the blood flow to be greatly increased. Based on this physiological mechanism, this paper builds a large-scale visual nervous system network based on the Wang–Zhang neuron model, and quantitatively reproduced the hemodynamics observed in fMRI by computer numerical simulation. The results demonstrated that the negative energy mechanism, which was previously reported by our group using Wang–Zhang neuronal model, played a vital role in governing brain hemodynamics. Also, it precisely predicted the neural coupling mechanism between the energy metabolism and blood flow changes in the brain under stimulation. In nature, this mechanism is determined by imbalance and mismatch between the positive and negative energy during the spike of neuronal action potentials. A quantitative analysis was adopted to elucidate the physiological mechanism underlying this phenomenon, which would provide an insight into the principle of brain operation and the neural model of the overall brain function.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3