Approximating piecewise nonlinearities in dynamic systems with sigmoid functions: advantages and limitations

Author:

Martinelli Cristiano,Coraddu AndreaORCID,Cammarano Andrea

Abstract

AbstractIn the industry field, the increasingly stringent requirements of lightweight structures are exposing the ultimately nonlinear nature of mechanical systems. This is extremely true for systems with moving parts and loose fixtures which show piecewise stiffness behaviours. Nevertheless, the numerical solution of systems with ideal piecewise mathematical characteristics is associated with time-consuming procedures and a high computational burden. Smoothing functions can conveniently simplify the mathematical form of such systems, but little research has been carried out to evaluate their effect on the mechanical response of multi-degree-of-freedom systems. To investigate this problem, a slightly damped mechanical two-degree-of-freedom system with soft piecewise constraints is studied via numerical continuation and numerical integration procedures. Sigmoid functions are adopted to approximate the constraints, and the effect of such approximation is explored by comparing the results of the approximate system with the ones of the ideal piecewise counter-part. The numerical results show that the sigmoid functions can correctly catch the very complex dynamics of the proposed system when both the above-mentioned techniques are adopted. Moreover, a reduction in the computational burden, as well as an increase in numerical robustness, is observed in the approximate case.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3