Real-time parameter updating for nonlinear digital twins using inverse mapping models and transient-based features

Author:

Kessels Bas M.ORCID,Fey Rob H. B.,van de Wouw Nathan

Abstract

AbstractIn the context of digital twins, it is essential that a model gives an accurate description of the (controlled) dynamic behavior of a physical system during the system’s entire operational life. Therefore, model updating techniques are required that enable real-time updating of physically interpretable parameter values and are applicable to a wide range of (nonlinear) dynamical systems. As traditional, iterative, parameter updating methods may be computationally too expensive for real-time updating, the inverse mapping parameter updating (IMPU) method is proposed as an alternative. For this method, first, an artificial neural network (ANN) is trained offline using novel features of simulated transient response data. Then, in the online phase, this ANN maps, with little computational cost, a set of measured output response features to parameter estimates enabling real-time model updating. In this paper, various types of transient response features are introduced to update parameter values of nonlinear dynamical systems with increased computational efficiency and accuracy. To analyze the efficacy of these features, the IMPU method is applied to a (simulated) nonlinear multibody system. It is shown that a smart selection of features, based on, e.g., the frequency content of the transient response, can improve the accuracy of the estimated parameter values, leading to more accurate updated models. Furthermore, the generalization capabilities of the ANNs are analyzed for these feature types, by varying the number of training samples and assessing the effect of incomplete training data. It is shown that the IMPU method can predict parameter values that are not part of the training data with acceptable accuracy as well.

Funder

NWO

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference82 articles.

1. Haag, S., Anderl, R.: Digital twin—proof of concept. Manuf. Lett. 15, 64–66 (2018). https://doi.org/10.1016/j.mfglet.2018.02.006

2. Grieves, M., Vickers, J.: Digital twin,: Mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems. Springer, Cham (2017)

3. Glaessgen, E.H., Stargel, D.S.: The digital twin paradigm for future NASA and US air force vehicles. Struct. Dyn. Mater. (2012). https://doi.org/10.2514/6.2012-1818

4. Karve, P.M., Guo, Y., Kapusuzoglu, B., Mahadevan, S., Haile, M.A.: Digital twin approach for damage-tolerant mission planning under uncertainty. Eng. Fract. Mech. (2020). https://doi.org/10.1016/j.engfracmech.2019.106766

5. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. White Paper 1, 1–7 (2014)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3