Snap-back repellers and chaos in a class of discrete-time memristor circuits

Author:

Di Marco Mauro,Forti Mauro,Pancioni Luca,Tesi Alberto

Abstract

AbstractIn the last decade the flux-charge analysis method (FCAM) has been successfully used to show that continuous-time (CT) memristor circuits possess for structural reasons first integrals (invariants of motion) and their state space can be foliated in invariant manifolds. Consequently, they display an initial condition dependent dynamics, extreme multistability (coexistence of infinitely many attractors) and bifurcations without parameters. Recently, a new discretization scheme has been introduced for CT memristor circuits, guaranteeing that the first integrals are preserved exactly in the discretization. On this basis, FCAM has been extended to discrete-time (DT) memristor circuits showing that they also are characterized by invariant manifolds and they display extreme multistability and bifurcations without parameters. This manuscript considers the maps obtained via DT-FCAM for a circuit with a flux-controlled memristor and a capacitor and it provides a thorough and rigorous investigation of the presence of chaotic dynamics. In particular, parameter ranges are obtained where the maps have snap-back repellers at some fixed points, thus implying that they display chaos in the Marotto and also in the Li–Yorke sense. Bifurcation diagrams are provided where it is possible to analytically identify relevant points in correspondence with the appearance of snap-back repellers and the onset of chaos. The dependence of the bifurcation diagrams and snap-back repellers upon the circuit initial conditions and the related manifold is also studied.

Funder

Università degli Studi di Siena

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3