An engineering perspective on the numerics of quasi-periodic oscillations

Author:

Bäuerle SimonORCID,Fiedler Robert,Hetzler Hartmut

Abstract

AbstractThe phenomenon of quasi-periodicity in deterministic dynamical systems describes stationary solutions, which neither exhibit a finite period length nor are chaotic. Recently, an increasing demand for robust numerical methods is driven by applied dynamics and industrial applications. In this context, direct time integration proves to be impractical due to extensive integration intervals. Therefore, in a first step, this contribution aims on giving an application oriented survey of the basic theory as well as alternative concepts. In the following, the focus is set on the direct computation of invariant manifolds (surfaces) on which quasi-periodic solutions evolve. This approach offers a unique framework from which classical methods (e.g., the multi-harmonic-balance) can be systematically deduced and mutual similarities between different methods may be revealed. This contribution starts with a brief summary of related mathematical basics, which is followed by an overview of available methods. Subsequently, the computation of invariant manifolds by means of solving a partial differential equation is emphasized. These PDEs may be formulated using different parametrization strategies. Here, the concept of hyper-time parametrization is particularly interesting, since it is a promising starting point for the development of numerical schemes with general applicability in engineering problems. In order to solve the underlying PDE, various methods may be used. The implementation of a Fourier-Galerkin method as well as a finite difference method is presented and compared on the basis of computational results of the van-der-Pol equation (with and without forcing). Moreover, it is demonstrated that both methods apply to periodic as well as quasi-periodic solutions alike. In order to exemplify the practical use, these methods are applied to a generic rotordynamic model problem.

Funder

Universität Kassel

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3