An extended energy balance method for resonance prediction in forced response of systems with non-conservative nonlinearities using damped nonlinear normal mode

Author:

Sun YekaiORCID,Vizzaccaro Alessandra,Yuan Jie,Salles Loïc

Abstract

AbstractThe dynamic analysis of systems with nonlinearities has become an important topic in many engineering fields. Apart from the forced response analyses, nonlinear modal analysis has been successfully extended to such non-conservative systems thanks to the definition of damped nonlinear normal modes. The energy balance method is a tool that permits to directly predict resonances for a conservative system with nonlinearities from its nonlinear modes. In this work, the energy balance method is extended to systems with non-conservative nonlinearities using the concept of the damped nonlinear normal mode and its application in a full-scale engineering structure. This extended method consists of a balance between the energy loss from the internal damping, the energy transferred from the external excitation and the energy exchanged with the non-conservative nonlinear force. The method assumes that the solution of the forced response at resonance bears resemblance to that of the damped nonlinear normal mode. A simplistic model and full-scale structure with dissipative nonlinearities and a simplistic model showing self-excited vibration are tested using the method. In each test case, resonances are predicted efficiently and the computed force–amplitude curves show a great agreement with the forced responses. In addition, the self-excited solutions and isolas in forced responses can be effectively detected and identified. The accuracy and limitations of the method have been critically discussed in this work.

Funder

China Scholarship Council

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3