Optimizing energy dissipation in gas foil bearings to eliminate bifurcations of limit cycles in unbalanced rotor systems

Author:

Papafragkos Panagiotis,Gavalas Ioannis,Raptopoulos Ioannis,Chasalevris AthanasiosORCID

Abstract

AbstractHigh-speed rotor systems mounted on gas foil bearings present bifurcations which change the quality of stability, and may compromise the operability of rotating systems, or increase noise level when amplitude of specific harmonics drastically increases. The paper identifies the dissipating work in the gas film to be the source of self-excited motions driving the rotor whirling close to bearing’s surface. The energy flow among the components of a rotor gas foil bearing system with unbalance is evaluated for various design sets of bump foil properties, rotor stiffness and unbalance magnitude. The paper presents a methodology to retain the dissipating work at positive values during the periodic limit cycle motions caused by unbalance. An optimization technique is embedded in the pseudo-arc length continuation of limit cycles, those evaluated (when exist) utilizing an orthogonal collocation method. The optimization scheme considers the bump foil stiffness and damping as the variables for which bifurcations do not appear in a certain speed range. It is found that secondary Hopf (Neimark–Sacker) bifurcations, which trigger large limit cycle motions, do not exist in the unbalanced rotors when bump foil properties follow the optimization pattern. Period-doubling (flip) bifurcations are possible to occur, without driving the rotor in high response amplitude. Different design sets of rotor stiffness and unbalance magnitude are investigated for the efficiency of the method to eliminate bifurcations. The quality of the optimization pattern allows optimization in real time, and gas foil bearing properties shift values during operation, eliminating bifurcations and allowing operation at higher speed margins. Compliant bump foil is found to enhance the stability of the system.

Funder

Alexander von Humboldt-Stiftung

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3