Author:
Abdulkareem Ayad Qays,Humod Abdulrahim Thiab,Ahmed Oday Ali
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Abed, A. M., Gitaffa, S. A. and Issa, A. H. (2021). Quadratic support vector machine and K-nearest neighbor based robust sensor fault detection and isolation. Engineering and Technology J. 39, 5, 859–869.
2. Isermann, R. (2005). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer Science & Business Media. Berlin, Germany.
3. Jan, S. U., Lee, Y. D., Shin, J. and Koo, I. (2017). Sensor fault classification based on support vector machine and statistical time-domain features. IEEE Access, 5, 8682–8690.
4. Ji, S., Xu, X. and Wen, C. (2017). A kind of K—Nearest neighbor fault diagnosis method based on MIV data transformation. Chinese Automation Cong. (CAC), Jinan, China.
5. Luo, J., Namburu, M., Pattipati, K. R., Qiao, L. and Chigusa, S. (2009). Integrated model-based and data-driven diagnosis of automotive antilock braking systems. IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans 40, 2, 321–336.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献