Author:
Ullah Jar,Li Huan,Ashraf Umar,Ehsan Muhsan,Asad Muhammad
Abstract
AbstractGeological facies evaluation is crucial for the exploration and development of hydrocarbon reservoirs. To achieve accurate predictions of litho-facies in wells, a multidisciplinary approach using well log analysis, machine learning, and statistical methods was proposed for the Lower Indus Basin. The study utilized five supervised machine learning techniques, including Random Forest (FR), Support Vector Machine (SVM), Artificial Neural Network (ANN), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP), to analyse gamma ray, resistivity, density, neutron porosity, acoustic, and photoelectric factor logs. The Concentration-Number (C-N) fractal model approach and log–log plots were also used to define geothermal features. In a study on machine learning models for classifying different rock types in the Sawan field of the Southern Indus Basin, it was discovered that sand (fine, medium and coarse) facies were most accurately classified (87–94%), followed by shale (70–85%) and siltstone facies (65–79%). The accuracy of the machine learning models was assessed using various statistical metrics, such as precision, recall, F1 score, and ROC curve. The study found that all five machine learning methods successfully predicted different litho-facies in the Lower Indus Basin. In particular, sand facies were most accurately classified, followed by shale and siltstone facies. The multilayer perceptron method performed the best overall. This multidisciplinary approach has the potential to save time and costs associated with traditional core analysis methods and enhance the efficiency of hydrocarbon exploration and development.
Publisher
Springer Science and Business Media LLC
Subject
Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology