Pore morphology effect on elastic and fluid flow properties in Bakken formation using rock physics modeling

Author:

Ozotta OgochukwuORCID,Saberi Mohammad Reza,Kolawole Oladoyin,Malki Mohamed Lamine,Rasouli Vamegh,Pu Hui

Abstract

Abstract Unconventional geo-resources are critical due to their important contributions to energy production. In this energy transition and sustainability era, there is an increased focus on CO2-enhanced oil recovery (CO2-EOR) and geological CO2 storage (GCS) in unconventional hydrocarbon reservoirs, and the extraction of hot fluid for energy through enhanced geothermal systems. However, these energy solutions can only be achieved through efficient stimulation to develop a complex fracture network and pore structure in the host rocks to extract heat and hydrocarbon, or for CO2 storage. Using Bakken formation well data and rock physics models, this study aimed to identify the post-depositional effect of pore structure on seismic velocity, elastic moduli, and formation fluid; and further predict the best lithofacies interval for well landing, and the implications for fluid (gas, oil, and water) recovery in naturally- and often systematically-fractured geosystems. The KT and DEM models' predictions show distinct formation intervals exhibiting needle-like pores and having higher seismic velocities (Vp and Vs) and elastic moduli (K and µ), relative to other formation intervals that exhibit moldic pores. At the same fluid concentration, the needle-like pores (small aspect ratios) have a higher impact on elastic moduli, Vp, and Vs than on the moldic spherical pores with all other parameters held constant. Vp is affected more than Vs by the properties of the saturating fluid (gas, oil, or water) with Vp being greater in Bakken formation when it is water-saturated than when it is gas-saturated. Vs exhibit the reverse behavior, with Vs greater in the gas-saturated case than in the water-saturated case. Further, analyses suggest that the middle Bakken formation will have a higher susceptibility to fracturing and faulting, and hence will achieve greater fluid (oil and water) recovery. Our findings in this study provide insights that are relevant for fluid production and geo-storage in unconventional reservoirs. Article highlights Integrated well log data and rock physics models. Investigated the effect of changes in pore structure on elastic properties and fluid flow in shale. Increase in porosity causes a reduction in elastic moduli and seismic velocities. Vp is more affected by pore geometry than Vs depending on density and properties of saturating fluid. Lithofacies with needle−like pores are more susceptible to fracturing than lithofacies with intragranular pores.

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3