Abstract
AbstractKinetics of the $$\gamma$$
γ
/$$\gamma ^{\prime}$$
γ
′
phase transformation and the interdiffusion phenomena in single-crystal Ni-based superalloys, under isothermal annealing and composition gradient, is investigated through the phase-field and continuum diffusion models. The employed models in the present work exploit CALPHAD-based thermodynamics and kinetics databases, in order to perform realistic simulations. We specifically predict the interdiffusion of elements for a hypothetical alloy AlCoCrTaNi/Ni diffusion couple, equivalent to the CMSX-10/Ni diffusion couple, at 1323 K. Accordingly, the phase fraction and morphology of $$\gamma ^{\prime}$$
γ
′
precipitations in the $$\gamma$$
γ
matrix is simulated as well. The implemented multi-component diffusion model takes into account vacancies and pore formation, reflecting Kirkendall effect. Furthermore, the time evolution of morphology parameters of the precipitate-depleted zone in the diffusive region (i.e., the position and the size) are estimated.
Publisher
Springer Science and Business Media LLC