Interdiffusion Studies in Alloy 617 and 10Cr Steel Joints Using Diffusion Couple Approach and Simulations

Author:

Haribabu S.,Sudha C.,Ganesh P.,Kumar Abhay

Abstract

AbstractIn the steam turbine circuit of advanced ultra supercritical power plants dissimilar joints of alloy 617 and 10Cr steel are unavoidable due to economic reasons. In these joints diffusional interaction causing change in microstructure is identified as possible reason for failure during service. To investigate the interdiffusion driven structural changes, alloy 617/10Cr steel diffusion couples were fabricated. To achieve good metallurgical bond between Fe- and Ni-based alloys and to study diffusional transformations under accelerated conditions, diffusion couples were prepared by annealing in the temperature range of 1000-1100 °C for 3-8 h. For all conditions heat treatment interaction zones were wider in alloy 617 (150-200 μm at 1050 °C, 8 h) than in 10Cr steel (15-16 μm at 1050 °C, 8 h) and the phase stability at the interface was studied using electron microprobe and x-ray diffraction. Average effective interdiffusion coefficients were calculated using Dayananda’s approach. While the diffusivities of substitutional solutes were similar in alloy 617 (0.31-0.42 × 10−15 m2/s at 1050 °C), they differed in 10Cr steel in the following sequence: $$\tilde{D}_{{{\text{Cr}}}}$$ D ~ Cr  > $$\tilde{D}_{{{\text{Fe}}}}$$ D ~ Fe $$\tilde{D}_{{{\text{Ni}}}}$$ D ~ Ni  > $$\tilde{D}_{{{\text{Co}}}}.$$ D ~ Co . Further, multicomponent interdiffusion profiles were predicted using homogenization model in DICTRA and an integrated approach combining DICTRA with Thermo-Calc helped in understanding the experimental observations on the interface microstructure.

Funder

Indira Gandhi Centre for Atomic Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3