Multicarrier technique for 5G massive MIMO system based on CDMA and CMFB

Author:

Ghorab Laila El,Badran Ehab F.,Zaki Amira I.,Badawi Waleed K.ORCID

Abstract

AbstractFilterbank multicarrier (FBMC) is an effective method for modulation over massive multiple-input multiple-output (MIMO) channels in the future fifth generation wireless networks. This multicarrier technique provides high spectral efficiency, and it is resilient against synchronization errors compared to the well-known orthogonal frequency division multiplexing technique. This paper introduces a new technique, that combines the Code-division multiple-access (CDMA) and cosine modulated filter banks, a specific class of FBMC, to massive MIMO communication systems. In the proposed technique, the data symbols are transmitted on different sub-bands and also, they are spread in each sub-band by CDMA code. The proposed technique reduces the interference between data symbols, which consequently improves bit-error-rate (BER) performance. Simulation results show that the overall BER performance of the proposed multicarrier transmission technique is significantly enhanced. The results obtained show that as the number of base station antennas increases, different channel distortions are averaged out, thus BER decreases (in average by 10–2) for the same signal-to-noise ratio.

Funder

Arab Academy for Science, Technology & Maritime Transport

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral efficiency analysis on massive MIMO filter bank;International Journal of Electronics;2024-07-08

2. Simulation and Analysis of the Code Domain NOMA with UFMC for 5G Wireless Networks;Electrical, Control and Communication Engineering;2024-04-29

3. Pilot-Assisted Channel Estimation for SFBC MIMO-OFDM with Index Modulation in Higher Time-Varying Fading Channel;2024 12th International Electrical Engineering Congress (iEECON);2024-03-06

4. Condition Monitoring of Coal Machine Equipment Based on Self-Powered Sensor System Design;2023 7th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE);2023-10-20

5. Efficient Iterative Detection Based on Conjugate Gradient and Successive Over-Relaxation Methods for Uplink Massive MIMO Systems;Journal of Telecommunications and Information Technology;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3