Electronic properties and molecular electrostatic potential mapping of edge functionalized GQDs with ZnO, CuO, and TiO2

Author:

Ibrahim Asmaa,Ezzat Hend A.,Aal Mervat Abd El

Abstract

AbstractGraphene quantum dots (GQDs) are a cutting-edge material that has excellent electrical, thermal, and mechanical characteristics, as well as minimal toxicity and powerful photoluminescence. These unique properties give GQDs the ability to be used in different electrical, optical, and optoelectronic applications. GQDs with hexagonal and triangular cuts with armchair and zigzag ends (ATRI, AHEX, ZTRI, and ZHEX) were decorated with different metal oxides such as ZnO, CuO, and TiO2. Metal oxides (MOs) were employed to tune the band gap and electrical properties of GQDs for usage in certain applications. The influence of functionalization on the GQDs electronic properties was examined utilizing HOMO–LUMO orbital distribution and molecular electrostatic potential (MESP) mapping calculations. The model structures were calculated using density functional theory (DFT: B3LYP/ LanL2DZ). The band gap energies of AHEX C42, ZHEX C54, ATRI C60, and ZTRI C46 were found to be 3.508, 2.886, 3.177, and 0.305 eV, respectively. The findings show that addition of MOs increases the total dipole moment (TDM) while decreasing the band gap energy ∆E. The most effective metal MO on GQDs band gap and electronic properties was TiO2, which enhanced the band gap energy ∆E for AHEX C42-TiO2, ZHEX C54-TiO2, ATRI C60-TiO2, and ZTRI C46-TiO2 to 0.391, 0.530, 0.287, and 0.250 eV, respectively. Accordingly, GQDs seem to be excellent for certain applications. Accordingly, GQDs functionalized with ZnO could be used for sensors, due to their increased responsiveness and energy gap variation while GQDs functionalized with TiO2 is excellent to be applied as optoelectronic materials.

Funder

The National Research Institute of Astronomy and Geophysics

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3