Enhanced deep learning based channel estimation for indoor VLC systems

Author:

Salama Wessam M.,Aly Moustafa H.ORCID,Amer Eman S.

Abstract

AbstractThis paper aims to improve the channel estimation (CE) in the indoor visible light communication (VLC) system. We propose a system that depends on a comparison between Deep Neural Networks (DNN) and Kalman Filter (KF) algorithm for two optical modulation techniques; asymmetrically clipped optical-orthogonal frequency-division multiplexing (ACO-OFDM) and direct current optical-orthogonal frequency division multiplexing (DCO-OFDM). The channel estimation can be evaluated by changing the rate of errors in the received bits, where increased error means a performance decrease of the system and vice versa. Receiving less errors at the receiver indicates improved channel estimation and system performance. Thus, the main aim of our proposal is decreasing the error rate by using different estimators. Using the simulation results with the metric parameter of bit error rate (BER) aims to determine the improvement ratio between different systems. The proposed model is trained with OFDM signal samples with labels, where the labels represent the received signal after applying OFDM travelling across the medium. At a BER = 10–3 with DCO-OFDM, the DNN outperforms KF with 1.6 dB (7.6%) at the bit energy per noise $$({{\varvec{E}}}_{{\varvec{b}}}/{{\varvec{N}}}_{{\varvec{o}}})$$ ( E b / N o ) axis. Also, for ACO-OFDM at BER = 10–3, the DNN achieves better results than KF by about 1.3 dB (8.12%) at the $$({{\varvec{E}}}_{{\varvec{b}}}/{{\varvec{N}}}_{{\varvec{o}}}).$$ ( E b / N o ) . At different values of M in QAM, the DNN outperforms KF for ACO-OFDM by average improvement of ~ 1 dB (~ 11.5%).

Funder

Arab Academy for Science, Technology & Maritime Transport

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3