Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation

Author:

Ansari Ali R.,Jhangeer Adil,Imran Mudassar,Alsubaie A. S. A.,Inc Mustafa

Abstract

AbstractThis manuscript delves into the examination of the stochastic fractional derivative of Drinfel’d-Sokolov-Wilson equation, a mathematical model applicable in the fields of electromagnetism and fluid mechanics. In our study, the proposed equation is through examined through various viewpoints, encompassing soliton dynamics, bifurcation analysis, chaotic behaviors, and sensitivity analysis. A few dark and bright shaped soliton solutions, including the unperturbed term, are also examined, and the various 2D and 3D solitonic structures are computed using the Tanh-method. It is found that a saddle point bifurcation causes the transition from periodic behavior to quasi-periodic behavior in a sensitive area. Further analysis reveals favorable conditions for the multidimensional bifurcation of dynamic behavioral solutions. Different types of wave solutions are identified in certain solutions by entering numerous values for the parameters, demonstrating the effectiveness and precision of Tanh-methods. A planar dynamical system is then created using the Galilean transformation, with the actual model serving as a starting point. It is observed that a few physical criteria in the discussed equation exhibit more multi-stable properties, as many multi-stability structures are employed by some individuals. Moreover, sensitivity behavior is employed to examine perturbed dynamical systems across diverse initial conditions. The techniques and findings presented in this paper can be extended to investigate a broader spectrum of nonlinear wave phenomena.

Funder

Fırat University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3