Simultaneous monitoring of the values of CD, Crosstalk and OSNR phenomena in the physical layer of the optical network using CNN

Author:

Mrozek TomaszORCID,Perlicki Krzysztof

Abstract

AbstractThe aim of the research was to explore the possibilities of using the Asynchronous Delay Tap Sampling (ADTS) and Convolutional Neural Network (CNN) methods to monitor the simultaneously occurring phenomena in the physical layer of the optical network. The ADTS method was used to create a data sets showing the combination of Chromatic Dispersion (CD), Crosstalk and Optical to Signal Noise Ratio (OSNR) as optical disturbances in graphic form. Data were generated for 10 GB/s, Non-return-to-zero On–off keying (NRZ-OOK) and Differential Phase Shift Keying (DPSK) modulation and bit delays: 1 bit, 0.5 bit and 0.25 bit. A total of 6 data sets of 62,000 images each were obtained. The learning process was carried out for the number of epochs 50 and 1000. From the obtained learning results of the network, models with the best $$R^{2}$$ R 2 matching factor were selected. The learned models were further used to study the recognition of three phenomena simultaneously. The tests were carried out on sets of 2500 images in a combination of interference in the following ranges: 400–1600 ps/nm for CD and 10–30 dB for Crosstalk and OSNR. Very good results were obtained for recognizing simultaneously occurring phenomena using models learned up to 1000 epoch. Accuracy of over 99% was obtained for CD and Crosstalk for both modulations. In the case of the OSNR phenomenon, slightly weaker results were obtained above 96% in most cases. For models taught up to 50 epoch, very good results were obtained for the CD phenomenon (over 99%). For Crosstalk weaker results for OOK modulation were obtained. Poor results were obtained for the OSNR phenomenon, where recognition accuracy ranged from 50 to 80%, depending on the type of modulation and bit delay. Based on the conducted research, it was established that the use of ADTS and CNN methods enables monitoring of simultaneously occurring CD, Crosstalk and OSNR interference in the physical layer of the optical network, while maintaining the requirements for Optical Performance Monitoring systems. These requirements are met for network models learned up to 1000 epoch.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org (2015)

2. Accuracy score, 3.3.2.2., https://scikit-learn.org/stable/modules/model_evaluation.html (accessed 08.2021)

3. Anderson, T.B., Kowalczyk, A., Clarke, K., Dods, D.S., Hewit, D., Li, C.: Jonathan: multi impairment monitoring for optical networks. J. Lightw. Technol 27(16), 3729–3736 (2009)

4. Anderson, T., Dods, S.D., Clarke, K., Bedo, J., Kowalczyk, A.: Multi-impairment monitoring in photonic networks. In: Proc. ECOC, paper 3.5.1. Berlin, Germany (2007)

5. Beaman, D., Anderson, T., Li, J.C., Jerphagnon, O., Le Rouzic, E., Neddam, F., et al.: Demonstration of simultaneous OSNR and CD monitoring using asynchronous delay tap sampling on an 800 km WDM test bed. In: Proc., paper 9.3.4 ECOC. Vienna, Austria (2009)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3